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Multicompartment characteristics of relaxation and diffusion in
a model for (plant) cells and tissues have been simulated as a means
to test separating the signal into a set of these compartments. A
numerical model of restricted diffusion and magnetization relax-
ation behavior in PFG-CPMG NMR experiments, based on Fick’s
second law of diffusion, has been extended for two-dimensional
diffusion in systems with concentric cylindrical compartments sep-
arated by permeable walls. This model is applicable to a wide range
of (cellular) systems and allows the exploration of temporal and spa-
tial behavior of the magnetization with and without the influence
of gradient pulses. Numerical simulations have been performed to
show the correspondence between the obtained results and previ-
ously reported studies and to investigate the behavior of the appar-
ent diffusion coefficients for the multicompartment systems with
planar and cylindrical geometry. The results clearly demonstrate
the importance of modelling two-dimensional diffusion in rela-
tion to the effect of restrictions, permeability of the membranes,
and the bulk relaxation within the compartments. In addition,
the consequences of analysis by multiexponential curve fitting are
investigated. C© 2002 Elsevier Science (USA)
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INTRODUCTION

Both pulsed field gradient NMR and relaxation time mea-
surements are widely used to probe the molecular displace-
ments of liquid molecules and the geometry of the microstruc-
tures containing them in porous and biological media (1– 4).
In such systems the measured displacements and observed re-
laxation times contain information about the diffusivity within
the compartments, the dimensions of the compartments, and
the exchange between these compartments through semiperme-
able membranes (5–14). If diffusion takes place in compart-
ments separated by permeable membranes, as is the situation
for most biological cells, the membrane permeability and dif-
ferences in (bulk) relaxation times within the compartments
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strongly affect the shape of the signal attenuation plot (SAP)
or the q-dependence and thus the apparent diffusion coefficient
D∗. Especially the effect of differences in bulk relaxation in
combination with membrane permeabilities on D∗ has hardly
been taken into consideration in literature, but clearly cannot be
ignored (2, 9, 11, 14).

Combined diffusion and relaxation time measurements and
analysis, also called diffusion analysis by relaxation time separa-
tion (DARTS) (5, 13), yield more detailed insight in the behavior
of the different liquid ensembles and the microstructure (10, 12,
15–18). However, for further improvement of the experimental
setup and analysis approach, and for a better understanding of
the complex molecular behavior, we require adequate mathe-
matical models to evaluate the effect of diffusion and relaxation
on the observed NMR signal.

Among the broad spectrum of the reported modelling ap-
proaches, three ways are clearly distinguishable. The first ap-
proach is an analytical solution of the given partial differential
equation for a certain combination of the initial and boundary
conditions (11, 19). Despite the fact that solutions in a closed
analytical form are obtained, the number of analytically treated
configurations is limited. Another approach consists of the de-
tailed reproduction of every molecular movement and transfor-
mation using simulation methods (20, 21). The position and
orientation of every spin should be calculated for every time
step, thus allowing the most extraordinary system configura-
tions, but software implementation of such procedures may be
very time-consuming even for simple configurations on power-
ful workstations. The compromised way of action is based on
the numerical solution of the partial differential equation with
respect to spin magnetization (6, 9, 14). This approach ensures,
on the one hand, reasonable speed of calculations and, on the
other hand, the possibility to investigate rather complicated con-
figurations. These models are generally based on the different
evaluations of Fick’s second law of diffusion (22). In this way,
a variety of systems with complicated configurations can be
modelled by simply defining appropriate initial and boundary
conditions, combined with a proper description of the shape of
the pulsed magnetic field gradients (11, 19). This approach is
adopted for the model presented in this paper.
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Previously, we reported a numerical model to simulate the
combined diffusion and magnetization relaxation behavior in
NMR experiments for planar geometries (9). However, more
realistic models should, of course, take into account the (con-
centric) cylindrical symmetry of many biological objects. Doing
so, the effect of restricted diffusion and the possibility to cir-
cumvent a diffusion barrier by two-dimensional diffusion can
be investigated. Examples of such a concentric cylindrical ge-
ometry are plant xylem vessels and blood vessels surrounded
by cellular tissues, and vacuolized plant cells, in which a large
inner compartment, the vacuole, is surrounded by two thin lay-
ers, the cytoplasm and cell wall. All compartments have distinct
relaxation and diffusion properties and diffusional exchange be-
tween these compartments can occur (22, 23). In this paper we
demonstrate the agreement of the obtained results with results
that were reported previously for cylindrical geometries and we
show examples of typical differences between planar and cylin-
drical geometries. This approach may be of great value to un-
derstand the complicated process of exchange in biological and
porous structures and is a stepstone towards even more real-
istic, and hence more complicated, models. Such models are
necessary to understand the relation between microanatomical
structure of tissues and the origin and variation of image contrast
in MRI. In addition, we need such models to solve the question
of how far (and in what way) combined diffusion-relaxation
time measurements allow us to separate signals into a set of
multicompartmental sources.

THEORY

A two-dimensional system is considered that consists of a set
of concentric cylindrical compartments, each surrounded by a
membrane (Fig. 1). The i th compartment is characterized by an
intrinsic relaxation time Tj and diffusion constant D j as well as
by a radius R j and permeability ρ j−1 and ρ j for the inner and
outer membrane, except for the innermost compartment where
only an outer membrane is present.

The two-dimensional spin magnetisation density S(r, ϕ, t)
can be described in cylindrical coordinates by the following
differential equation based on Fick’s second law of diffusion,
including the effect of relaxation (22),

∂S(r, ϕ, t)

∂t
= ∂

r∂r

{
r D(r, ϕ)

∂S(r, ϕ, t)

∂r

}

+ ∂

r2∂ϕ

{
D(r, ϕ)

∂S(r, ϕ, t)

∂ϕ

}
− S(r, ϕ, t)

T (r, ϕ)
, [1]

where D(r, ϕ) and T (r, ϕ) are the diffusion coefficient and re-
laxation time, respectively, as a function of the radius and angle.
Diffusion and relaxation are assumed to be constant within a par-
ticular compartment, but may differ for different compartments.

Equation [1] should be supplemented by a proper set of initial
and boundary conditions. Magnetization at time t = 0 takes the
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FIG. 1. Structure of multicompartment systems with cylindrical and planar
geometries.

form

S(r, ϕ, t)t=0 = f (r, ϕ), [2]

where f (r, ϕ) is the spin magnetization density at time t = 0. The
permeability ρ of the membranes is accounted for by boundary
conditions in two dimensions and is formulated analogously
to the one-dimensional case (9). For the internal and external
membranes of the j th compartment, one can then write

ρ j−1[Sj (R j−1, ϕ, t) − Sj−1(R j−1, ϕ, t)]

= D(R j−1, ϕ)
∂Sj (R j−1, ϕ, t)

∂r
,

[3]
ρ j [Sj+1(R j , ϕ, t) − Sj (R j , ϕ, t)]

= D(R j , ϕ)
∂Sj (R j , ϕ, t)

,

∂r

where Sj (r, ϕ, t) = S(r, ϕ, t), when r ∈ [R j−1, R j ], j = 1, . . . , n,
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equation (24). However, when the strength of the gradient pulses
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R0 = 0, and n is the number of compartments. The outer border
of the system is characterized by

Sn+1(Rn, ϕ, t) = F(t), [4]

where F(t) is the outer spin magnetization at time step t .
The numerical solution of Eq. [1] with the initial condition

Eq. [2] and boundary conditions Eq. [3] is based on the transfor-
mation of Eq. [1] to an equation in finite differences according
to an implicit scheme (24),

Sm+1/2
p,q = Sm

p,q + �t

2

(
φ2

r Sm+1/2
p,q + φ2

ϕ Sm
p,q

) − �t Sm+1/2
p,q

2Tp.q
,

[5]
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p,q + �t

2

(
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r Sm+1/2
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ϕ Sm+1
p,q

)− �t Sm+1
p,q
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,

where Sm
p,q = S(rp, ϕq , tm), and the indexes m, p, and q denote

time step, radius step, and angle step, respectively; φ2
r and φ2

ϕ

are the finite differences of the second order with respect to
radius and angle, respectively. The finite difference scheme of
Eq. [5] shows how spin magnetization density at the next time
step Sm+1

p,q = S(rp, ϕq , tm + �t) is calculated from the spin mag-
netization density at the previous time step Sm

p,q = S(rp, ϕq , tm)
via spin magnetization density at half of the next time step
Sm+1/2

p,q = S(rp, ϕq , tm + �t/2).
Assuming that the diffusion coefficient is independent on the

angle (D(r, ϕ) = D(r )), the radial finite difference φ2
r Sm

p,q can
be expressed as

φ2
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and for the angle finite difference ϕ2
ϕ Sm

p,q , one obtains

φ2
ϕ Sm

p,q = Dp Sm
p,q+1 − 2Dp Sm

p,q + Dp Sm
p,q−1

r2
r �ϕ2

, [7]

where Dp = D(rp), and �r and �φ are the radius and angle
steps, respectively. The relaxation time T (r, ϕ) is assumed to be
independent of the angle ϕ: T (r, ϕ) = T (r ), Tp = T (rp). Sub-
stituting Eqs. [6] and [7] in Eq. [1] according to the numerical
scheme of Eq. [5] yields after some transformations two sets of
tridiagonal linear algebraic equations:
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+ �t Dp+1/2

2�r2

(
1 + �r

2rp

)
Sm+1/2

p+1,q

= − �t Dp

2r2
r �ϕ2

Sm
p,q−1 +

(
�t Dp

r2
r �ϕ2

− 1

)
Sm

p,q − �t Dp

2r2
r �ϕ2

Sm
p,q+1

[8]
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The solutions of the tridiagonal sets [8] and [9] can be ob-
tained by the Gauss elimination method (25). Normally, it
is supposed that the diffusion coefficient Dp and the intrin-
sic relaxation time Tp is constant within one compartment
Dp−1/2 = Dp+1/2 = Dp = D(rp) = D j , Tp = T (rp) = Tj j when
r ∈ [R j−1, R j ], j = 1, . . . , n, and each membrane is treated as
an additional compartment of the length �r with the diffusion
coefficient ρ j�r (14).

To account for the influence of magnetic field gradient pulses
as used in PFG measurements, differential equation [1] takes the
form (25)

∂S(r, ϕ, t)

∂t
= ∂

r∂t

{
r D(r, ϕ)

∂S(r, ϕ, t)

∂r

}

+ ∂

r2∂ϕ

{
D(r, ϕ)

∂S(r, ϕ, t)

∂r

}

+
(

iγ g(t)r cos(ϕ) − 1

T (r, ϕ)

)
S(r, ϕ, t), [10]

where g(t) describes the sequence of magnetic field gradient
pulses as a function of time, and γ is the gyromagnetic ratio.
In our case, g(t) is a pair of magnetic field gradient pulses with
the identical amplitude G, duration δ, and opposite polarity; the
distance between the leading edges of the gradient pulses is �.
The gradient pulses are applied along the polar axis direction
(i.e., across a diameter). The finite difference scheme can be
directly applied for the numerical solution of the differential
is high, the phase difference between adjacent positions can
be very large and in that case it is impossible to get sufficient



E
216 VAN DER W

accuracy with reasonable values for the time and space steps. In
this case it is practicable to solve linear sets [8] and [9], assuming
that there are no gradient pulses, and then perform the correction
for the influence of the gradient pulses, multiplying the obtained
solution S∗(rp, ϕq , tm) by a factor, characterizing the influence
of the gradient pulses (14):

S(rp, ϕq , tm) = S∗(rp, ϕq , tm) exp(iγ g(tm)rp cos(ϕq )). [11]

SOFTWARE IMPLEMENTATION

The presented two-dimensional numerical model was im-
plemented in C++ as an extension of the one-dimensional
model [9] and inherits all advantages of that model. The time
of modelling for particular two-dimensional configurations as
given under Results is based on calculations on a Pentium III
550 MHz. The simulations typically yield an array of magneti-
zation spin density as it develops in time and space for a given
value of the pulsed field gradient amplitude. Several of these
arrays can be compressed into a two-dimensional data set, con-
taining the PFG and relaxation development of the entire system.
Random noise was generated during the simulations to avoid fit-
ting problems, so that in all simulations a S/N of 10,000 was
reached.

RESULTS AND DISCUSSION

Comparison with Other Models

Several computations have been performed to show the corr-
espondence between the presented numerical model and a num-
ber of analytically solved models that were published earlier.
Although spatial information is available as output of the
model, all results shown here are based on the overall decay
curves.

We started with a simulation of multiexponential relaxation
behavior in the well-known Brownstein–Tarr model (26) for a
planar and a cylindrical system, without gradient pulses. Ac-
cording to their theory, multiexponential relaxation arises as a
consequence of an eigenvalue problem associated with the size
and shape of a cell with biologically relevant dimensions; the
intensity and decay times of these exponentials can be calcu-
lated from the analytical equations. To model the Brownstein–
Tarr system, we simulated a single planar or cylindrical com-
partment with a radius R1 = 25 µm, a diffusion coefficient
D1 = 2 ∗ 10−9 m2/s, and an intrinsic relaxation time of 2 s. The
relative permeability M = ρ1 R1/D1 of the boundaries was var-
ied between M = 0.001 and M = 1000. The data were fitted
with SPLMOD (27), using five discrete exponentials, of which
the largest three are plotted in Fig. 2 (symbols). Modelling us-

ing 3000 time steps, 500 space steps, and 90 angle steps took
approximately 12 minutes. The results show an excellent agree-
ment between the Brownstein–Tarr theory (lines) and our first
ERD ET AL.

FIG. 2. (A) Relative intensity of the first three modes of relaxation as a func-
tion of the relative membrane permeability M = ρ1 R1/D1. The Brownstein–Tarr
results are depicted as lines (striped for the planar and solid for the cylindrical
geometry), whereas our results are plotted with square symbols for the planar
geometry, and open circles for the cylindrical geometry. Note the change of scale
for the I1 and I2 curves. (B) Decay time of the first three modes of relaxation.

exponential (I0, T0). The second and third components cor-
respond well to the theory for higher intensities. For very low
intensities of these components (M < 0.5), the relaxation times
show some deviations due to fitting errors.

The results of the PFG part of the simulations were verified by
comparing them with the Callaghan model (19), which describes
spin behavior within a confined compartment with closed or per-
meable boundaries. This model uses a narrow pulse approxima-
tion, which was approached by using a very short gradient pulse
(δ = 0.1 ms) with a high gradient strength. The simulated system
was again a single compartment with a closed or partially per-
meable boundary (D1 = 2 ∗ 10−9 m2/s, R1 = 20 µm, and ρ1 = 0
or ρ1 = 2 ∗ R1/D1). Relaxation was eliminated by defining in-
finitely large intrinsic T2 values. Echo attenuation plots obtained
by the Callaghan model (solid line) and the present one (sym-
bols) are shown in Fig. 3, for planar (A, B) and cylindrical geo-
metries (C, D) and open (A, C) or closed boundaries (B, D). The
echo attenuation is plotted as a function of (2π )−1γ gδ ∗ R . Ex-
1

pressed in multiples of R2
1/D1, the observation time � is respec-

tively 0.2, 0.5, 1.0, or 2.0. The results clearly show that our model
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FIG. 3. Signal attenuation plots of the Callaghan model (lines) and the
present model (symbols) for a one-compartment system. Expressed in multiples
of R2

1/D1, the observation time � is respectively 0.2, 0.5, 1.0, or 2.0 from
bottom to top. (A) Planar geometry and fully reflective membranes. (B) Planar

geometry and partially permeable membranes (ρ1 R1/D1 = 2). (C) Cylindrical
geometry and fully reflective membranes. (D) Cylindrical geometry and partially
permeable membranes (ρ1 R1/D1 = 2).
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corresponds excellently to the Callaghan model. Calculation
time was 9 minutes when using 64 gradient steps, 400 space
steps, and 36 angle steps.

Effect of Cylindrical Geometry

Molecular motion within multicompartment systems
(Fig. 4A) as (plant) cells or porous media will not only depend
on the radius of these compartments, but in the cylindrical
case also on the probability to circumvent a diffusion barrier
by two-dimensional diffusion, i.e., the chance that spins in
the outer compartment diffuse from one side of the system
around the inner compartment to the other side of the system
without passing membranes and the inner compartment. Hence,
it is useful to have an understanding of the impact of the
geometry on the diffusion and relaxation properties of the
system. Therefore, restricted diffusion in a two-dimensional
model consisting of concentric cylinders is compared with a
one-dimensional system consisting of plan parallel barriers.
The simulation of the echo attenuation was done in 16 PFG
steps, a typical number for an experimental data set.

First, we compared two systems with cylindrical and pla-
nar geometries as shown in Fig. 4A. Both of them consist of
two compartments with fully reflective walls. The inner com-
partment contains no initial magnetization. The diffusion co-
efficient of the outer compartment is D2 = 1 ∗ 10−9 m2/s and
its width R1 = R2, where R1 is the radius of the inner com-
partment. For the moment it was assumed that no relaxation
occurred in either compartment. The resulting data set was

FIG. 4. (A) Cylindrical and planar geometries of the examined system.

(B) Apparent diffusion coefficient D as a function of the relative length of
the outer compartment r∗ for cylindrical (solid line) and planar (dashed line)
geometries (membranes are fully reflecting).
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fitted with a single exponential. The dependence of the ap-
parent diffusion coefficient (D∗) in the planar and cylindrical
configurations on the relative length of the outer compartment
r∗ = R2/(2

√
2D2(� − δ/3)) is presented in Fig. 4B for � = 18

ms and δ = 5 ms. It is clear that especially for small values of r∗,
the cylindrical configuration provides a less restricted geometry
for diffusion than the planar one. The reason for this is that spin-
bearing molecules can freely move along the angle axis, and the
maximum displacement is only determined by the outer wall at
an effective radius 2R2. When the relative length r∗ increases
and diffusion in planar compartment becomes less restricted, the
difference between the apparent diffusion coefficients for both
geometries gradually disappears and D∗ approaches the intrinsic
diffusion coefficient.

When the internal membranes of these two-compartment sys-
tems become semipermeable, the properties of the “empty” com-
partment start to play a role as well. We simulated the configura-
tions where either the inner compartment (Fig. 5A(I)) or the outer
compartment (Fig. 5A(II)) contains magnetization. For both
configurations the ratio r∗ equals 1.05, with R1 = R2 = 12 µm.
The diffusion coefficients are for the inner compartment (D1)

FIG. 5. (A) Cylindrical and planar geometries of two examined systems.
(B) Apparent diffusion coefficient D∗ as a function of the relative membrane

permeability M for cylindrical (solid line) and planar (dashed line) geometries.
The subscripts in and out are used to distinguish the inner and outer compartment,
respectively.
ERD ET AL.

2 ∗ 10−9 m2/s, and for the outer compartment (D2) 1∗10−9 m2/s.
All these values are reasonable for a plant cell. In Fig. 5B, the
dependencies of the apparent diffusion coefficient D∗ on the
relative membrane permeability M are shown, for the planar
(dashed line) and cylindrical (solid line) geometry. When the
outer compartment contains magnetization, an increase in rela-
tive permeability causes an increase of both apparent diffu-
sion coefficients, though for the planar case this phenomena
is more pronounced. This is because the restriction effects are
stronger in the planar system when M is small, as was al-
ready shown in Fig. 4B. When the inner membrane becomes
more permeable, the differences between the two systems almost
disappear.

For the second configuration (Fig. 5A(II)), the parameters re-
main the same, only now the inner compartment contains mag-
netization. In this case the apparent diffusion coefficient D∗ in-
creases for both cylindrical and planar geometries (Fig. 5B(II)),
but the plateau value for high M is lower for the cylindrical geo-
metry. In this case complete exchange between the two com-
partments occurs, resulting in a lower D∗ for the cylinder due
to the larger volume of the outer compartment.

In experimental multicompartment geometries, as, for exam-
ple, plant cells, usually all spins are excited, so all compartments
contain magnetization. Such a system is the superposition of
the two configurations examined above (Fig. 6A). Now clearly
the resulting diffusion attenuation decay shows multiexponen-
tial behavior. Hence, a biexponential fit was used to analyze the
data (13). It should be mentioned that a comparison of cylin-
drical and planar geometries for such a system is not absolutely
correct, because the contribution of the magnetization from each
compartment to the whole magnetization is not identical for dif-
ferent geometries, i.e., the ratio of the contributions from the
outer and inner compartments equals 1 in the planar case and 3
in the cylindrical case.

For a closed membrane (M = 0) the two fitted components for
the combined system should correspond to the separate apparent
diffusion coefficients in Fig. 5B. As one can see from Figs. 6B
and 6C, neither the diffusion coefficients nor the amplitude of
these components agree to what is expected from Fig. 5B. The
reason is that the diffusion attenuation is not strictly biexpo-
nential, but multiexponential, as the diffusion behavior of the
spins is not the same for all positions within the compartments.
Therefore, the results in Fig. 6 correspond to the best fit of the
diffusion attenuation, but the values no longer correspond to the
true intensities and apparent diffusion coefficients in the system.
The consequence for experimental data is that multiexponential
analysis of diffusion behavior cannot freely be related to the
geometrical parameters of the system.

Experimentally, additional parameters as T2 can be used to
provide extra contrast to extract physiologically relevant pa-
rameters (13). This was simulated for these two-compartment
systems by introducing an intrinsic relaxation time of 2 s for the

inner compartment, and 0.2 s for the outer one, which are rea-
sonable values for a plant cell (2). The parameters for these
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FIG. 6. (A) Cylindrical and planar geometries of the examined system.
(B) Amplitude of the fractions divided by the input value as a function of
the relative membrane permeability M for cylindrical (solid line) and planar
(dashed line). (C) Apparent diffusion coefficient D∗ as a function of the relative
membrane permeability M for cylindrical (solid line) and planar (dashed line)
geometries.

simulations were chosen as in an experimental PFG-CPMG
experiment (DARTS) (13), i.e., a PFG part of 16 gradient steps,
combined with an echo train of 1000 echoes with an interecho
time of 5 ms. Calculations took 15 minutes for 120 space steps,
36 angle steps, 16 gradient steps, and 1000 time steps. The result-
ing two-dimensional data sets were fitted with a coupled fitting
routine; first a biexponential fit was done on the relaxation part
with SPLMOD, and next the fitted intensities were used to fit
the corresponding diffusion fractions.

For very small M values, the fractions of the two components
and the corresponding T2 are equal to the input parameters
(T2 = 2 s and 0.2 s; amplitude = 1 : 1 for the planar and 1 : 3 for
the cylindrical case) and D∗ corresponds to the diffusion coeffi-
cients for the separated systems in Fig. 5 (lines in Figs. 7A–7C),
in contrast to those in Fig. 6. This clearly shows that the use
of T2 information is advantageous for discriminating different

fractions in a multicompartment system. When the membrane
permeability increased, the relaxation behavior evolved to an
RELAXATION IN CYLINDERS 219

FIG. 7. The same system was used as in Fig. 6, but with relaxation behavior.
(A) Amplitude of the fractions divided by the input value as a function of the
relative membrane permeability M for cylindrical (solid line) and planar (dashed
line) for simulations with an diffusion observation time � = 18 ms. The results
for the simulations with � = 90 ms are overplotted with symbols (squares for
the planar geometry and circles for the cylindrical geometry). (B) Relaxation

time of the fractions. Linestyles and symbols correspond to those in Fig. 7A.
(C) Apparent diffusion coefficient D∗ for an observation time � of 18 ms.
(D) Apparent diffusion coefficient D∗ for an observation time � of 90 ms.
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almost monoexponential decay, due to complete averaging of
the two compartments. The corresponding diffusion coefficients
first decrease due to averaging of the two fractions, but start to
increase as soon as the relaxation decay becomes monoexpo-
nential, and, as expected, the increase is more pronounced for
planar geometries. It should be noted that though a multipara-
meter approach is useful to discriminate compartments sepa-
rated by a membrane, the fitted parameters amplitude, T2 and
D∗, are no longer uniquely reflecting the properties of the dif-
ferent compartments when the membrane becomes reasonably
permeable (M > 0.01). For instance the value of the longest
T2 component, originating from the central compartment of
the model, becomes strongly dependent on those of the second
compartment and the actual membrane permeability.

Figure 7D shows the effect of a longer observation time �

(90 ms). The amplitude and T2 fits yield exactly the same results
as those for � = 18 ms (symbols in Figs. 7A, 7B). The restriction
effects on D∗, on the contrary, become much more pronounced.
For small M , all values are decreased, though only slightly in the
cylindrical outer compartment (solid line). This is a prominent
illustration of the effect of circumvential motion to overcome
diffusion restriction, and for M < 1 such data sets with vary-
ing observation time � can be very useful for discrimination
between planar and cylindrical geometries.

CONCLUSIONS

A numerical model for diffusion and magnetization relax-
ation behavior in PFG-CPMG NMR experiments has been ex-
tended to a two-dimensional system with concentric cylindrical
geometry. The results of this model show excellent agreement
with published analytical results. As an example of the rele-
vance of a two-dimensional model, the behavior of the apparent
diffusion coefficients and relaxation times in a multicompart-
ment system with the properties of a plant cell has been mod-
elled for both a planar and a cylindrical geometry. When the
difference in diffusion coefficients is relatively small, supple-
mentary contrast parameters as T2 are needed to unravel the
different fractions present. The difference between the obtained
values of the apparent diffusion coefficients and the true ones
can be explained by the influence of non- or semipermeable
membranes (restricted diffusion). This restriction effect is more
pronounced for planar systems than for cylindrical ones. Fur-
thermore, the differences in diffusion coefficients between the
two geometries become larger for longer observation times. To-
gether, this clearly demonstrates the need for a two-dimensional
system to be able to understand experimental results in terms of
geometry.
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